X-Ray Crystal and Molecular Structure of Trimethyltin Glycinate, a Polymeric, Trigonal Bipyramidal Tin Compound

By Benedict Y. K. Ho, J. A. Zubieta,* and J. J. Zuckerman*
(Department of Chemistry, State University of New York at Albany, Albany, NY 12222)

Summary Trimethyltin glycinate is shown by X-ray crystallography to be a linear polymer with aminobridged trigonal bipyramidal units.

The reaction of trialkyltin hydroxide with amino-acids has been shown to yield a variety of structural types with the common stoicheiometry $\mathrm{R}_{3} \mathrm{SnAA}$ ($\mathrm{R}=\mathrm{Me}$ or cyclohexyl, $A A=$ anion of the amino-acid). Trimethyltin glycinate
appeared to be polymeric (room temperature ${ }^{119 m} \mathrm{Sn}$ Mössbauer spectrum) and co-ordinated through the aminonitrogen $\left[\nu\left(\mathrm{NH}_{2}\right) 3311 \mathrm{~cm}^{-1}\right]$, ${ }^{1}$ presumably ruling out the carboxylate-bridged structure common to trialkyl-tin acetates. ${ }^{2}$

Crystals of $\mathrm{Me}_{3} \mathrm{Sn}\left(\mathrm{O}_{2} \mathrm{CCH}_{2} \mathrm{NH}_{2}\right)$ are tetragonal with $a=b=7.839, c=14.659 \AA$, space group $P 4_{1}$ or $P 4_{s}$, $Z=4$. The structural analysis was based on 645 inde-
pendent reflections ($\left.I_{\mathrm{obs}}\right)>3 \sigma\left(I_{\mathrm{obs}}\right)\left(\mathrm{Cu}-K_{\alpha}\right)$, and R is currently 0.126 . The essential stereochemistry is shown in the Figure; e.s.d.'s in the bond lengths average 0.03 ($\mathrm{Sn}-\mathrm{C}$, $\mathrm{Sn}-\mathrm{O}, \mathrm{Sn}-\mathrm{N})$ and $0.04 \AA(\mathrm{C}-\mathrm{C}, \mathrm{C}-\mathrm{O}, \mathrm{C}-\mathrm{N})$. The structure analysis confirms the presence of amino-nitrogen coordination and the predicted distorted trigonal bipyramidal geometry about the tin, the more electronegative substituents occupying the apical positions. ${ }^{3}$ The $\mathrm{Me}_{3} \mathrm{Sn}$ unit is distinctly non-planar ($C_{3 v}$ local symmetry with Sn atom displaced toward the carboxylate oxygen $0 \cdot 12 \AA$ from the mean plane of the methyl carbon atoms).

Figure. Stereochemistry of $\mathrm{Me}_{3} \mathrm{Sn}\left(\mathrm{O}_{2} \mathrm{CCH}_{2} \mathrm{NH}_{2}\right)$ showing a portion of the one-dimensional chain. $\angle \mathrm{N}-\mathrm{Sn}-\mathrm{O}(1)=$ $159 \cdot 8^{\circ}$; mean $\mathrm{Sn}-\mathrm{C} 2 \cdot 14 \AA ; \mathrm{Sn}-\mathrm{N} 2.53 \AA ; \mathrm{Sn}-\mathrm{O}(1)=2 \cdot 27 \AA$.

The stereochemistry of the compound is determined by the geometrical requirements of the $\mathrm{Me}_{3} \mathrm{Sn}$ unit. The fivemembered chelate rings which are characteristic of amino-
acid-metal complexes ${ }^{4}$ are precluded in the linear arrangement of metal-ligand bonds required by fixing the oxygen and nitrogen atoms in the apical positions of the trigonal bipyramid at tin. The apical metal-ligand bonds formed by the co-ordination of the functional groups of two different ligand molecules result in infinite, one-dimensional chains. This type of bridging amino-acid co-ordination is only found in glycinatosilver(I) hemihydrate, where once again the preferred digonal co-ordination for $\mathrm{Ag}(\mathrm{I})$ determines the stereochemistry. ${ }^{5}$

Co-ordination occurs through a carboxylate oxygen and an amino nitrogen despite the generally believed greater affinity of tin for oxygen which would lead to the well established carboxylate bridged structure. ${ }^{2,6}$ The observed stereochemistry presumably reflects the tendency of amino acids to utilize their functional groups as fully as possible in metal co-ordination. ${ }^{4}$
The tin carboxylate carbonyl [$\mathrm{Sn}-\mathrm{O}(2)$] contact distance is $3 \cdot 22(3) \AA$ indicating some weak interaction. The hydrogen atoms of the amino group are apparently used in hydrogen bonding, as illustrated by the intramolecular $\mathrm{N}-\mathrm{O}(2)$ distance of $2 \cdot 94(3) \AA$ and an intermolecular contact distance of $2 \cdot 67(3) \AA$ with the adjacent symmetry related carboxylate carbonyl $\mathrm{O}(2)$.

The authors are grateful to the National Science Foundation for a grant (to J.J.Z.) in support of this work.
(Received, 2nd December 1974; Com. 1453.)

[^0]
[^0]: ${ }^{1}$ B. Y. K. Ho and J. J. Zuckerman, Inorg. Nuclear Chem. Letters, 1973, 9, 849; Inorg. Chem., 1973, 12, 1552 (1973).
 ${ }^{2}$ B. Y. K. Ho and J. J. Zuckerman, J. Organometallic Chem., 1973, 49, 1.
 ${ }^{3}$ E. L. Muetterties and R. A. Schunn, Quart. Rev., 1966, 245.
 ${ }^{4}$ H. C. Freeman, Adv. Protein Chem., 1967, 22, 257.
 ${ }^{5}$ C. B. Acland and H. C. Freeman, Chem. Comm., 1971, 1016.
 ${ }^{6}$ N. W. Alcock and R. E. Timms, J. Chem. Soc. $(A), 1968,1873$; H. Chih and B. R. Penfold, J. Cryst. Mol. Struct., 1973, 3, 285.

